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1. Introduction

There is nothing mysterious about the phenomenon of recoil. When a static compact ob-

ject is hit, it starts moving in the direction of impact. This is indeed one of the simplest

mechanical processes. However, the amount of effort needed to formally accommodate the

phenomenon of recoil does not always match its physical simplicity. One such example

is the recoil of quantum solitons [1], heavy particle-like quantum descendants of localized

classical static field configurations. The problem essentially comes from resorting to per-

turbative expansions in quantum field theory: due to the non-perturbatively large mass of

the solitons, the recoil velocity is small, and the algebraic representation of recoil becomes

distributed in a non-trivial way over the different orders of the perturbative expansion.

Furthermore, the most näıve attempts to organize the perturbation theory in the presence

of solitons are plagued by infrared divergences.

All of these difficulties have string-theoretic counterparts. If one tries to employ the

standard worldsheet conformal field theory (CFT) construction of string scattering ampli-

tudes in the background of a D0-brane, one ends up with infrared divergences in loop (e.g.
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annulus) diagrams. These divergences are associated with recoil. It is then imperative to

find a way to re-organize the string perturbative expansion, if one is to be able to per-

form computations beyond leading order in the string coupling. The issue in string theory

appears even more subtle than in field theory, since, as yet, a suitable non-perturbative for-

mulation of string theory is unknown (whereas in field theory the conventional Lagrangian

formulation is available). One therefore does not have a more fundamental starting point

for the investigations of recoil than the (infrared divergent) string perturbative expansion

in the background of a static D0-brane.

Furthermore, one encounters difficulties specifying the initial and final states of the D0-

brane, which is a necessity for implementing recoil. Indeed, open strings attached to the

D0-brane give a highly singular description of its translational motion: on-shell massless

modes in 0+1 dimensions necessarily have zero energy, so any finite velocity would require

a way to deal with an infinite number of open strings. Even identifying the initial and

final D0-brane states implicit in perturbative string scattering amplitudes is non-trivial.

Classically, the standard Dirichlet boundary conditions describe a D0-brane with a well-

defined position and zero velocity. Quantum mechanically (at non-zero string coupling),

the D0-brane has to become delocalized in position or momentum space or both, and it is

not a priori obvious which state is implicit in CFT computations.

Various strategies have been proposed for implementing recoil via extensions of the

worldsheet CFT [2 – 6]. One class of proposals proceed along the lines of the Fischler-

Susskind mechanism [7, 8] and construct a deformation of the standard D0-brane CFT

(referred to as “recoil operator”) that would represent a recoiling D0-brane [2, 3]. Unfor-

tunately, the condition that the recoil operator should cancel the annulus divergence does

not appear to fix it uniquely (in particular, different recoil operators have been proposed

in [2] and [3]). One can furthermore show that, if one cancels the annular divergence using

the recoil operators of [2] or [3], the resulting finite amplitudes display pathological features

(see appendix A, and the discussion in section 3).

In the second class of proposals, one introduces fully dynamical worldlines for the

D0-brane, and integrates over all the possible trajectories [4, 6]. This approach creates

within the theory an explicit dynamical variable describing the translational motion of the

D0-brane. Hence explicitly specifying the initial and final states of its translational motion

no longer poses a problem. The worldline formalism was first introduced in [4], but it was

not until [6] that adequate techniques were developed to perform computations with fully

dynamical D0-brane worldlines.

In the present paper, we use the formalism of [6] to compute string scattering ampli-

tudes in the presence of a D0-brane. The main result is that, in the worldline formalism, the

annulus divergences that plagued standard CFT computations are automatically cancelled

in a technically non-trivial way by divergent disk contributions. The disk contributions can

be reproduced by deforming the CFT with a specific “recoil operator”, which is bilocal and

different from the ones previously suggested in the literature. This way, we make contact

between the two main strategies to implement D0-brane recoil in perturbative string the-

ory: with current technology, the worldline formalism appears to be the more systematic

way to compute scattering amplitudes, but the results are consistent with introducing a
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recoil operator in the CFT (although the precise form of the recoil operator would have

been hard to derive purely within CFT).

A complementary perspective on D0-brane recoil is arrived at using low-energy effective

field theory, in particular supergravity coupled to the Dirac-Born-Infeld (DBI) action of

a D0-brane [5]. We use a DBI analysis to provide evidence that the infrared divergent

annulus contribution to scattering amplitudes in the presence of a static D0-brane can be

combined with divergent contributions from worldsheets with more holes, in such a way

that the sum of all contributions vanishes if non-zero momentum is transferred to the D0-

brane. In the DBI analysis, we show that the vanishing of the resummed amplitude is due

to momentum conservation: the amplitude has to be zero if momentum is not conserved

among the closed strings and D0-brane recoil is not taken into account. In the course of the

analysis, we provide evidence that the quantum state implicitly selected by the standard

D0-brane CFT is sharply localized in momentum space (and has a singular normalization

factor).

2. The annular divergence

The annular divergence in the background of a static D0-brane is a principal point of

departure for investigations of recoil, since it is this divergence that signals the breakdown

of the standard CFT description of a recoiling D0-brane. For a discussion of the annulus

amplitude in the context of more general D-branes, we refer to [9].

For solitons in field theory, infrared divergences in loop diagrams come from large dis-

tance propagation of the zero modes corresponding to shifting the entire topological defect.

In string theory, such large distance propagation corresponds to the annulus developing a

long, thin strip. Divergences from degenerating Riemann surfaces can be analyzed using

Polchinski’s plumbing fixture construction [8], which relates the divergences to amplitudes

evaluated on a lower genus Riemann surface. In particular, the annulus amplitude with an

insertion of vertex operators V (1), . . . , V (n) (in the interior) can be expressed through disk

amplitudes with additional operator insertions at the boundary:
〈
V (1) · · ·V (n)

〉

annulus
=

∑

α

∫
dq

q
qhα−1

∫
dθdθ′

〈
Vα(θ)Vα(θ′)V (1) · · ·V (n)

〉

D2

, (2.1)

where the summation extends over a compete set of local operators Vα(θ) with conformal

weights hα, and q is the gluing parameter, which can be related to the annular modulus.

(θ parametrizes the boundary of the disk.) The divergence in the integral over q coming

from the region q ≈ 0 (i.e., from an annulus developing a thin strip) will be dominated by

the terms with the smallest possible hα.

Neglecting the tachyon divergence, which is a pathology peculiar to the case of the

bosonic string, we consider (in close relation to the investigations of [3]) the following

operators with conformal weights h = 1 + α′ω2:

V i(θ) = ∂nXi(θ) exp
[
iωX0(θ)

]
. (2.2)

These operators correspond to massless open string states (representing translations of the

D0-brane in the i’th Dirichlet direction). For small values of q (which is the region we are
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interested in), only small values of ω will contribute to the integral. Hence, the annular

divergence takes the following form:

〈
V (1) · · ·V (n)

〉(div)

annulus
∼

1∫

0

dq

∞∫

−∞

dω q−1+α′ω2

∫
dθdθ′

〈
V i(θ, ω)V i(θ′, ω)V (1) · · ·V (n)

〉
D2

∼
1∫

0

dq

∞∫

−∞

dω q−1+α′ω2

∫
dθdθ′

〈
V i(θ, 0)V i(θ′, 0)V (1) · · ·V (n)

〉
D2

∼ P 2
〈
V (1) · · ·V (n)

〉
D2

1∫

0

dq

∞∫

−∞

dω q−1+α′ω2

∼ P 2
〈
V (1) · · ·V (n)

〉
D2

1∫

0

dq

q (− log q)1/2
, (2.3)

where in the transition from the second to the third line we have taken into account the fact

that the operator
∫

∂nXi(θ)dθ merely shifts the position of the D0-brane; inserting it into

any amplitude amounts to multiplication by the total (Dirichlet) momentum P transferred

by the closed strings to the D0-brane during scattering.

Introducing a cut-off ε on the lower bound of the integral (2.3) reveals a
√

| log ε|
divergence1, which is indicative of recoil:

〈
V (1) · · ·V (n)

〉(div)

annulus
∼ P 2

〈
V (1) · · · V (n)

〉
D2

√
| log ε|. (2.4)

The overall normalization in this expression can be fixed, for example, through an appeal

to the DBI formalism; the derivations are given in appendix C. The resulting expression

for the annular divergence is

〈
V (1) · · ·V (n)

〉(div)

annulus
= − P 2

2M

√
α′

π

〈
V (1) · · ·V (n)

〉
D2

√
| log ε|, (2.5)

where M is the mass of the D0-brane.

3. The final state of the recoiling D0-brane

It is a common intuition (also building upon the results on solitons in quantum field theory)

that the annular divergence in the background of a static D0-brane is caused by an improper

account of recoil. Indeed, propagating closed strings witness a recoiling D0-brane, which

cannot be viewed as a “small perturbation” of the static D0-brane background one tries

1Let us note in passing that, for the case of scattering off a D1-brane, one encounters a log | log ε|

divergence instead. Just as recoil provides a physical interpretation for the annular divergence in the

background of a D0-brane, the divergence in the background of a D1-brane must be given a clear intuitive

explanation. The associated phenomenon, which we call “local recoil”, can indeed be identified, and it has

been described in a separate publication [9].
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to expand around in standard perturbative string theory. One should therefore hope that

implementing the background of a recoiling D0-brane within the formalism would eliminate

the divergence. In other words, we should be trying to construct closed string scattering

amplitudes for which the velocity of the D0-brane is different in the asymptotic past and

the asymptotic future. Unfortunately, as we discussed in the introduction, it is not possible

to implement such a program in a straightforward way. Indeed, how would one construct

a state corresponding to a moving D0-brane in the standard D0-brane CFT?

It is commonly mentioned that the dynamical states of D-branes are represented in the

formalism of perturbative string theory as the massless scalar vibrational states of the open

strings attached to the D-brane worldvolume. For the purpose of evaluating the S-matrix,

such massless scalar vibrational states should be represented by their vertex operators:

∫
dθ : ∂nXi(θ) exp [ikµXµ(θ)] : (3.1)

(where the index i runs over the Dirichlet directions and the index µ over the Neumann

directions). Indeed, for (non-compact) higher-dimensional D-branes, such massless states

of open strings attached to the D-brane can be identified with one-particle states of the

worldvolume fields corresponding to the deformations of the D-brane. This is quite intu-

itive: the open strings move at the speed of light in the Neumann directions, and so do the

excitations of the worldvolume. Furthermore, should one be willing to specify the initial

and final vibrational states of a higher-dimensional brane in a scattering process involving,

say, closed strings, this can be immediately accomplished by including the appropriate

open strings into the initial and final states of the string theory S-matrix.

One must, however, realize that a significant subtlety is encountered if one attempts

to extend this picture to the case of D0-branes. Indeed, the only dynamical degree of

freedom of the D0-brane is the translational mode (i.e. the spatial coordinate of the D0-

brane). The quantum-mechanical spectrum of such mode is well known to be comprised

of momentum eigenstates, in particular, it is a continuous spectrum. On the other hand,

as mentioned in the introduction, the on-shell energy of the “massless scalar” open string

states attached to the D0-brane is exactly zero. The energy spectrum of the translational

mode generated by such “massless scalar” open strings will be singular, with discrete,

infinitesimally spaced levels. While heuristically one can try to think of the non-zero

momentum states as containing an infinite number of open strings, the practical value of

this picture is limited, unless one is able to specify a recipe for how the open strings should

be used to describe moving D0-branes in the standard D0-brane CFT.

Using open strings to describe the translational mode of the D0-brane would be analo-

gous to using the zero frequency limit of the harmonic oscillator to describe a free particle

(the quanta of the harmonic oscillator being analogous to the open strings). Note that

a similar problem emerges for field theory solitons if one does not treat the translational

mode carefully. On the other hand, an explicit introduction of the translational mode for

the solitons (as, for example, per Christ-Lee method [10]) resembles the worldline formal-

ism for D0-branes. For a pedagogical discussion of the translational motion of solitons,

see [1].
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What are the alternatives to the singular description of the translational motion of

the D0-brane by means of open strings? In analogy to the techniques used for field theory

solitons, one can introduce the translational degree of freedom for the D0-brane explicitly

(as a dynamical trajectory). The (singular) initial and final state massless open strings are

then absent from the physical amplitudes by construction. This is the worldline formalism

that will be our primary subject in the next section. As we shall see then, the amplitudes

constructed within this framework are free of infrared pathologies.

There is a direct analogy between the approach we have just described and the standard

treatment of D-instantons [11]. Namely, in the latter case, one does not attempt to describe

the translational zero-modes of the D-instantons in terms of open strings. Instead, one

explicitly introduces the collective coordinate (i.e., the position of the D-instanton) and

integrates over it. The resulting amplitudes are free of infrared pathologies. The worldline

formalism is a direct analog of this procedure for the case of D0-branes.

Before we proceed with a detailed construction of the worldline formalism and evalu-

ation of the scattering amplitudes, we would like to discuss briefly the approach to recoil

advocated in [2], since the recoil operator proposed in that paper bears some similarities

to the one we will find using the worldline formalism. A more detailed critical review of

the early literature [2 – 4] is presented in appendix A.

It is a common paradigm in string theory [7, 8] that, when infrared divergences are

present in loop diagrams, one must add to the worldsheet action a term (the “Fischler-

Susskind operator”) that explicitly involves the string coupling. The Fischler-Susskind

operator should be such that the higher-loop divergences of the original theory are cancelled

by lower-loop divergences with insertions of the Fischler-Susskind operator. For the case of

D0-brane recoil, one would say that the modified worldsheet action represents a recoiling

(rather than static) D0-brane, and refer to the corresponding deformation of the string

action as the “recoil operator”.

In [2], it is suggested to cancel the annulus divergence by introducing the following

recoil operator:

VPT ∼ vi

∫
dθ ∂nXi(θ)X0(θ)Θ(X0(θ)) (3.2)

(with Θ(t) being the step function, and vi the final velocity of the D0-brane, which is of

the order of the string coupling). The hope is then that the background correction due to

VPT will introduce a divergence on the disk

〈VPT V1(σ1) · · · Vn(σn)〉D2 (3.3)

which will, in turn, cancel the annulus divergence (2.3). The physical interpretation of

the background modification by VPT is that the D0-brane abruptly starts moving with the

appropriate recoil velocity vi at the moment X0 = 0. Note that the classical trajectory of

the D0-brane implied in VPT is given as vi X0 Θ(X0).

The operator VPT has indeed the right structure to cancel the annulus divergence (2.3).

However, VPT implies that the recoil happens at a given moment of time (X0 = 0), and

as discussed in appendix A, the physical finite part of the amplitude does depend on

which moment one chooses in the recoil operator. Since there is no physically meaningful
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“moment of recoil” for quantum particles with well-defined energies, such an ambiguity is

unacceptable.

Our main tool in this present investigation of the D0-brane recoil will be the worldline

formalism (rather than explicit deformations of the D0-brane CFT). Nevertheless, once

the scattering amplitudes have been computed within the worldline formalism, it will be

possible to see that the results can, in fact, be reproduced by deforming the CFT with

an appropriate recoil operator. This operator will be reminiscent of the operator (3.2),

and it will have a fairly clear heuristic interpretation, but we should emphasize that it is

distinct from (3.2) (for instance, it is bilocal rather than local) and it will not imply that

the D0-brane moves along a classical trajectory.

4. Worldline approach to D0-brane recoil

We now proceed to construct the dynamical worldline description of D0-branes. This

approach has been originally proposed in [4] and considerably strengthened and reorganized

in [6, 12]. In the present exposition, we first give a more pedagogical account of the

formalism of [6, 12], focusing on the aspects of the worldline derivations directly relevant

to the problem of recoil. Then we extend the computations of [6, 12] to demonstrate the

cancellation of divergences and derive a recoil operator that allows to reproduce our results

in conformal field theory.

4.1 Quantization of D0-brane worldlines

It is the principal objective of the worldline formalism to give an adequate account of

the translational motion of the D0-brane. To this end, one introduces its coordinates

explicitly and integrates over all the possible worldlines fµ(t), with t being the proper

time. The boundaries of the string worldsheet are restricted to the D0-brane worldline,

and the emission of closed strings is described by insertions of the closed string vertex

operators in the interior of the worldsheet. Our main object of interest is the amplitude for

a D0-brane to move from the point xµ
1 to the point xµ

2 while absorbing/emitting m closed

strings carrying momenta k1 to km:

G(x1, x2| k1, . . . , km) =
∑ (gst)

χ

Vχ

∫
[Df ]

diff
DtDX δ (Xµ(θ) − fµ(t(θ)))

× exp [−SD(f) − Sst(X)]

m∏

a=1

{gstVa(ka)} ,

(4.1)

where SD is the action for the D0-brane to be discussed below, Sst is the standard conformal

gauge action

Sst =
1

4πα′

∫
d2σ∇Xµ∇Xµ, (4.2)

the integration with respect to fµ extends over all the inequivalent (unrelated by diffeo-

morphisms) curves starting at x1 and ending at x2, the boundary of the worldsheet is

parametrized by θ, and t(θ) describes how this boundary is mapped onto the D0-brane

worldline. The sum is over all the topologies of the worldsheets (not necessarily connected,
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but without any disconnected vacuum parts) and χ is the Euler number. Vχ is the con-

formal Killing volume (the negative regularized value of [13] should be used for the disk).

The fully integrated form of the vertex operators is implied. We work in Euclidean space-

time, keeping in mind a subsequent analytic continuation to Minkowski signature. The

integration over moduli of the worldsheet is suppressed, since we shall be mostly working

with worldsheets of disk topology. The scattering amplitude can be deduced from (4.1) by

means of the standard reduction formula:

〈p1|p2〉kn
= lim

p2
1,p2

2→−M2

(
p2
1 + M2

) (
p2
2 + M2

) ∫
dx1dx2e

ip1x1eip2x2G(x1, x2| k1, . . . , km),

(4.3)

where M is the D0-brane mass.

Weyl invariance appears to be a rather subtle issue in (4.1). On physical grounds,

one would believe that making the D-branes fully dynamical reinforces the consistency of

the amplitudes, much in the same way as respecting the supergravity equations of motion

makes the non-linear σ-models consistent. This issue is, of course, intimately related to

the cancellation of divergences in the worldsheet integration, which is so essential to the

implementation of recoil. This cancellation of divergences will be the central theme of

our derivations within the worldline formalism, and we shall show (technically, to next-to-

leading order) that the theory is indeed divergence-free.

Of course, whether or not the integration over the D0-brane worldlines reinforces the

consistency of the string amplitudes depends crucially on the choice of the D0-brane world-

line action. It appears to be a fairly general principle [14] that the value of the effective

action for a background that couples to strings is given by (minus) the sum of all connected

vacuum string graphs evaluated in this background. Thus, very much in the spirit of [11]:

SD[f ] =
∑

connected

(gst)
χ

−Vχ

∫
DtDX δ (Xµ(θ) − fµ(t(θ))) exp [−Sst(X)]. (4.4)

Again, the negative regularized value of the conformal Killing volume should be used for

the disk [13]. The exponentiation of the action in the path integral can be seen as a result

of summing up the disconnected graphs containing vacuum parts [11]. It can be shown2

that, for nearly straight worldlines, the above action reduces to the näıve point-particle

result MT (with T being the length of the worldline). For curved worldlines, (4.4) would

take into account the backreaction from the spacetime fields excited by the accelerating D0-

brane. One must realize, however, that, for our present purposes (i.e., for investigations

of D0-brane recoil at next-to-leading order in the string coupling), it should suffice to

set SD = MT . Indeed, one can generically write an expansion of SD around a straight

worldline:

SD[f ] = MT +

∫
dt1 dt2 C2(t1, t2)f

i(t1)fi(t2)

+

∫
dt1 dt2 dt3 dt4 C4(t1, t2, t3, t4)f

i(t1)fi(t2)f
j(t3)fj(t4) + · · · ,

(4.5)

2Essentially, M is the constant produced by the integration over the non-zero modes of t(θ), and the

factor of T comes from the integration over the zero mode of t(θ).
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where the indices i and j run over the Dirichlet directions. Note, that only even powers of

f can be present by Lorentz invariance. Furthermore, due to translational invariance, all

the entries of f(t) can be replaced, say, by f(t)− f(0) (i.e., by a difference in the Dirichlet

position between two points). But, in a recoil process, due to the non-perturbatively large

mass of the D0-brane, all the velocities, and hence all the position differences are of order

gst. Therefore, the above expansion implies that

SD[f ] = MT + O(g2
st). (4.6)

But, since we intend to work at the order gst, rather than g2
st, we can set3

SD[f ] = MT (4.7)

for the rest of our present considerations.

Using the transformation properties of the vertex operators under the target space

translations, it is easy to see that

G(x1, x2| kn) = exp

[
i

2
(xµ

1 + xµ
2 )

∑
kn

]
G

(
x1 − x2

2
,−x1 − x2

2

∣∣∣∣ kn

)
. (4.8)

The first term here merely provides for the momentum conservation δ-function in the

Fourier transform, and (4.3) can be rewritten as4

〈p2|p1〉kn
= (2π)26δ(p1 + p2 +

∑
kn)

× lim
p2
1,p2

2→−M2

(
p2
1 + M2

) (
p2
2 + M2

) ∫
dx exp

[
i

2
(p1 − p2)x

]
G

( x

2
,−x

2

∣∣∣ kn

)
.

(4.9)

We shall work with this representation in our subsequent calculation of the amplitude.

4.2 The Gaussian integration

From (4.1), it is easy to see that the integration over X is Gaussian and can be performed

exactly. We will thus be able to recast the formalism into a (0+1)-dimensional form. The

Gaussian integration we have to perform is closely related to the derivations in [14] and

3Somewhat surprisingly, the derivations within the worldline formalism can be carried out with a good

deal of success even if the full action (4.4) is employed. We shall not need such exact derivations for our

present purposes, and will refer the interested readers to the considerations of [6] and [12].
4Note that, in our conventions, for the incoming particles, p (or k) is the momentum, and, for the

outgoing particles, it is minus the momentum. Hence, the energy-momentum conservation has the form

p1 + p2 +
P

kn = 0.
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can be implemented by applying the formula5

∫
DX δ (X(θ) − ξ(θ)) exp

[∫
d2σ

(
− 1

4πα′
∇X∇X + iJX

)]

= exp

[
−πα′

∫
J(σ)D(σ, σ′)J(σ′)d2σd2σ′ − i

∫
ξ(θ)∂nD(θ, σ′)J(σ′)dθd2σ′

+
1

4πα′

∫
ξ(θ)∂n∂n′D(θ, θ′)ξ(θ′)dθdθ′

]
.

(4.10)

Here, D is the Dirichlet Green function of the Laplace operator, ∆D(σ, σ′) = −δ(σ − σ′),

and ∂n denotes the normal derivative evaluated at the boundary (which is parametrized

by θ). It is convenient to consider

G
( x

2
,−x

2

∣∣∣ J
)

=
∑ (gst)

χ

Vχ

∫
[Df ]

diff
DtDX e−MT δ (Xµ(θ) − fµ(t(θ)))

× exp

[
−Sst(X) + i

∫
d2σJµXµ

] (4.11)

instead of (4.1). Indeed, differentiating6 with respect to the source J and setting it to∑
knδ(σ − σn) allows us to reproduce the amplitude for an arbitrary vertex operator

insertion. Performing the integration in (4.11) by means of (4.10) yields

G
( x

2
,−x

2

∣∣∣ J
)

=
∑ (gst)

χ

Vχ
exp

[
−πα′

∫
Jµ(σ)D(σ, σ′)Jµ(σ′)d2σd2σ′

]

∫
[Df ]

diff
Dt e−MT exp

[
−i

∫
fµ(t(θ))∂nD(θ, σ′)Jµ(σ′)dθd2σ′

]

exp

[
1

4πα′

∫
fµ(t(θ))∂n∂n′D(θ, θ′)fµ(t(θ′))dθdθ′

]
.

(4.13)

It should be noted that D(σ, σ′), χ and Vχ depend on the topology of the diagram cor-

responding to each particular term in the sum. For diagrams with disconnected parts,

D(σ, σ′) is block diagonal in the sense that it vanishes whenever the two arguments belong

to different disconnected components.

5The derivation of this basic yet important formula together with a few underlying subtleties is described

in appendices A and B of [12]. One can easily understand the general structure after shifting the integration

variable X(σ) by a solution of the Laplace equation X̄(σ) satisfying the boundary condition X̄(θ) = ξ(θ).

The second and third terms in the exponent of (4.10) originate from the change of variables, whereas the

first term arises from the remaining Dirichlet Gaussian integration. (Note that the boundary-to-boundary

and boundary-to-interior propagators satisfy a number of identities described in [12]. In particular, there

are identities relating the Neumann and Dirichlet Green functions.)
6More specifically, the vertex operators are polynomials of ∂Xµ/∂σα times eik·X . One can simulate the

insertion of ∂Xµ/∂σα by the functional differentiation

∂

∂σα

δ

δJµ(σ)
. (4.12)

Setting J =
P

knδ(σ − σn) at the end of the computation will take care of the factor of eik·X .
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The path integral in (4.13) may seem rather cumbersome, as one of the functions to be

integrated over appears in the argument of the other one. Nevertheless, the integration over

fµ(t) can be performed exactly by means of a technique very similar to the treatment of the

free point particle in [15]. We first rewrite the measure on reparametrization equivalence

classes of fµ(t) as

[Df ]diff = Df δ
[
ḟ2 − 1

]
= Df

∫
Dz exp


−

T∫

0

z(ḟ2 − 1)dt


 , (4.14)

where δ[ḟ2 − 1] is a product of δ-functions at every point (reinforcing t to be the proper

time), and, for each t, the integration over z(t) is along a contour going from c − i∞ to

c+ i∞ in the complex z plane, with c being an arbitrary (positive) constant. This contour

can of course be deformed, an opportunity implicit in our subsequent application of the

saddle point method. If we now introduce7

N (t, t′) = −
∫

dθdθ′ ∂n∂n′D(θ, θ′) δ (t − t(θ)) δ
(
t′ − t(θ′)

)
;

d(t, σ) =

∫
dθ ∂nD(θ, σ) δ (t − t(θ)) ,

(4.17)

the f -integration in (4.13) can be recast into a manifestly Gaussian form:

G
( x

2
,−x

2

∣∣∣J
)

=
∑ (gst)

χ

Vχ
exp

[
−πα′

∫
Jµ(σ)D(σ, σ′)Jµ(σ′)d2σd2σ′

]

∫
DtDzDf e−MT exp

[
−

∫
z(ḟ2 − 1)dt

]
exp

[
−i

∫
fµ(t)d(t, σ)Jµ(σ)dtd2σ

]

exp

[
− 1

4πα′

∫
fµ(t)N (t, t′)fµ(t′)dtdt′

]
.

(4.18)

7These shorthands have been first proposed in [6]. They may require a certain amount of time to

get accustomed to, but ultimately prove very convenient in handling the formalism. The general algebraic

structure here is as follows: whenever there are two functions f(θ) and t(θ) at our disposal, we can introduce

f̃(t) ≡

Z

dθ δ(t − t(θ)) f(θ). (4.15)

In particular,
Z

f̃(t) dt =

Z

f(θ) dθ (4.16)

and, if f(θ) = g(t(θ)), then f̃(t) = g(t). The purpose of such transformations is to remove t(θ) from the

arguments of the functions appearing in the worldline path integral, which is an important pre-requisite for

explicitly performing the Gaussian path integration.
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It is convenient to change to integration over ḟ by means of the relations8

Df = dTDḟ δ




T∫

0

ḟµdt + xµ


 , fµ(t) =

xµ

2
+

t∫

0

ḟµdt. (4.19)

It is also important to keep in mind the various properties of the functions N (t, t′) and

d(t, σ). In particular, the following relations for the Dirichlet Green function (which are

intimately related to the two-dimensional Gauss law)

∫
dθ ∂n∂n′D(θ, θ′) = 0,

∫
dθ ∂nD(θ, σ′) = −1 (4.20)

imply that

T∫

0

dtN (t, t′) = 0,

T∫

0

dt d(t, σ) = −1. (4.21)

If we also perform the Fourier transformation (4.9) and substitute the Fourier representa-

tion of the δ-function in (4.19), we arrive at the expression

G(p1, p2|J) =

∫
dx exp

[
i

2
(p1 − p2)x

]
G

( x

2
,−x

2

∣∣∣J
)

(4.22)

=
∑ (gst)

χ

Vχ
exp

[
−πα′

∫
Jµ(σ)D(σ, σ′)Jµ(σ′)d2σd2σ′

]

∫
dx dTDtDz e

R

z dt e−MT

∫
Dḟ e−

R

zḟ2dt exp

[
ix

(
p1 − p2

2
+

1

2

∫
Jdσ

)]
δ




T∫

0

ḟµdt + xµ




exp


−i

∫
dtd2σ




t∫

0

ḟµ(t̃)dt̃


 d(t, σ)Jµ(σ)




exp


− 1

4πα′

∫
dtdt′




t∫

0

ḟµ(t̃)dt̃


N (t, t′)




t′∫

0

ḟµ(t̃′)dt̃′





 .

We now perform the integration over x, taking into account that
∫

Jdσ = −p1 − p2, and

also switching the order of integrations in the exponents of the last two lines, while keeping

8Note that the question of what measure one should choose for the integration over T is a priori subtle

and it has been given an extensive treatment in [15]. The näıve measure dT (rather than µ(T )dT ) is

correct in our case. In particular, with this measure, the integration over T gives the correct pole structure

necessary for the reduction formula, whereas a different choice would not have produced kinematically

acceptable momentum dependences of the (off-shell) amplitudes.
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in mind the relations (4.21). The result takes the form

G(p1, p2|J) =
∑ (gst)

χ

Vχ
exp

[
−πα′

∫
Jµ(σ)D(σ, σ′)Jµ(σ′)d2σd2σ′

]

∫
dTDtDz e

R

z dt e−MT

∫
Dḟ exp


−i

∫
ḟµ(t)


pµ

1 −
t∫

0

d(t̃, σ)Jµ(σ)dt̃d2σ


 dt




exp

[
−

∫
ḟµ(t)B(t, t′)ḟµ(t′)dtdt′

]
,

(4.23)

where we have introduced

B(t, t′) = z(t) δ(t − t′) +
1

4πα′

t∫

0

dt̃

t′∫

0

dt̃′ N (t̃, t̃′). (4.24)

At this point, the Gaussian integration becomes completely straightforward and yields

G(p1, p2|J) =
∑ (gst)

χ

Vχ
exp

[
−πα′

∫
Jµ(σ)D(σ, σ′)Jµ(σ′)d2σd2σ′

]

∫
dTDt(θ)Dz(t) det[B]−D/2 e−MT exp

[∫
z dt

]

exp


−1

4

∫ (
pµ
1 −

t∫

0

d(t̃, σ)Jµ(σ)dt̃d2σ
)
B−1(t, t′)

(
p1µ −

t′∫

0

d(t̃′, σ′)Jµ(σ′)dt̃′d2σ′
)
dtdt′


 .

(4.25)

From this representation, it is apparent that the endpoints of the z integration contour can

be moved towards −∞. The contour itself cannot shrink to −∞, however, on account of

the singularities of (detB)−D/2. Should there be a discontinuity in t(θ), these singularities

move towards −∞ allowing the contour to be deformed9 arbitrarily far to the left in the

complex z plane. Then the integrand will vanish due to the last factor in the second

line of (4.25). This is as it should be, since discontinuous worldsheets do not give any

contribution to the original path integral (4.1).

9To make this more specific, one can consider the quadratic form defined by B(t, t′):

Z

dt dt′ϕ(t)B(t, t′)ϕ(t′) =

Z

zϕ2dt −
1

4πα′

Z

dθdθ′∂n∂n′D(θ, θ′)

t(θ)
Z

0

ϕ(t)dt

t(θ′)
Z

0

ϕ(t′)dt′, (4.26)

where ϕ(t) is an arbitrary continuous function (note that detB in (4.25) is evaluated in the space of

continuous functions fµ(t)). The second term in (4.26) is non-negative, since −∂n∂′

nD(θ, θ′) defines a non-

negative quadratic form. Furthermore, if t(θ) develops a discontinuity,
t(θ)
R

0

ϕ(t)dt acquires a discontinuity

as well. Also, ∂n∂′

nD(θ, θ′) is a highly singular distribution (due to the singularities of the Dirichlet Green

function) [14]. In particular, ∂n∂′

nD(θ, θ′) produces infinity if it is contracted with a function that is not

continuous. Therefore, for discontinuous t(θ), the second term in (4.26) will become infinitely large and

positive, and it will be possible to choose z(t), such that
R

z(t)dt is arbitrarily large and negative, without

introducing negative eigenvalues to the quadratic form (4.26). In other words, it will be possible to deform

the integration contour of z(t) and make exp[
R

z(t)dt] arbitrarily close to 0, without ever crossing the

singularities of detB (all the eigenvalues of B are kept non-negative).
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4.3 Recoil perturbation theory

Let us now examine how the worldline description of D0-branes works in the recoil regime,

i.e., for closed strings scattering off a D0-brane. Since the mass of the D0-brane diverges

in the limit gst → 0, it can be treated as static to the lowest order in gst (if we keep the

momenta of the incident closed strings fixed as gst → 0), and the corrections due to the

motion of the D0-brane’s center-of-mass (i.e., recoil) will appear as a perturbative expansion

in powers of gst. This is the familiar recoil perturbation theory. In the present treatment,

we shall generate the perturbative expansion by constructing a suitable expansion of the

“effective action” functional in the path integral (4.25):

Seff [z(t), t(θ)] = −
∫

z dt

+
1

4

∫ (
pµ
1 −

t∫

0

d(t̃, σ)Jµ(σ)dt̃d2σ
)
B−1(t, t′)

(
p1µ −

t′∫

0

d(t̃′, σ′)Jµ(σ′)dt̃′d2σ′
)
dtdt′.

(4.27)

Our intention will be to compute the next-to-leading order term of the disk scattering

amplitude and show that this correction contains a divergence of the form needed to cancel

the annular divergence (2.5).

There is a difficulty one encounters in handling the effective action Seff . It is a most

straightforward approach to try to construct a Taylor-like expansion of Seff in powers of

t(θ) around t(θ) = const:

Seff (const + t(θ))

= Seff (const) +

∫
dθ

δSeff

δt(θ)

∣∣∣∣
const

t(θ) +
1

2

∫
dθdθ′

δ2Seff

δt(θ)δt(θ′)

∣∣∣∣
const

t(θ)t(θ′) + · · · .

(4.28)

This strategy comes to mind in immediate relation to the computational techniques most

commonly used in σ-models, and it has been employed in [4] for the purposes we are

presently pursuing here. Unfortunately, such an expansion does not exist. In [4], various

ζ-function prescriptions have been devised to deal with the infinities arising when one tries

to implement the Taylor-like expansion, but, as a result, the simple divergent structure of

the type needed to cancel (2.5) was lost.

The origin of the above complication can be traced back to the non-analytic properties

of the worldlines in the path integral (4.13). Indeed, for non-analytic fµ(t) (most worldlines

are fractal and therefore non-differentiable [16]) the “effective action” in (4.13) does not

admit a Taylor-like expansion in t(θ) around any configuration of t(θ). The integration over

fµ(t) improves the situation considerably: the resulting effective action can be expanded

around any t(θ) 6= const, but the non-analyticity still survives10 for worldsheets whose

boundary shrinks to a single point.

Luckily, the Taylor-like expansion is not the only way to generate a sensible perturba-

tion theory. Appearing as insertions in a Gaussian path integral, the exponentials of t(θ)

10One can observe the failure of the Taylor-like expansion around t(θ) = const by inspecting the second

functional derivative δ2Seff/δt(θ1)δt(θ2). Applying the Leibniz rule, one will obtain, among others, the
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are just as tractable as powers of t(θ). We shall therefore resort to a combination of a

Taylor-like and a Fourier-like expansion. We first introduce z(t) = z0 + δz(t) and

A(t, t′) = z0 δ(t − t′), B(t, t′) = δz(t) δ(t − t′) +
1

4πα′

t∫

0

dt̃

t′∫

0

dt̃′N (t̃, t̃′), (4.32)

such that B(t, t′) = A(t, t′) + B(t, t′), and expand formally

B−1 =
1

A
− 1

A
B

1

A
+

1

A
B

1

A
B

1

A
+ · · · . (4.33)

Note that, at this point, the value of z0 still needs to be specified, and it shall be prudent

to choose it in such a way that the term linear in δz(t) is absent in the resulting expansion

of Seff .

The ultimate goal of this expansion is to recast the effective action in the form

Seff = SGauss[t(θ), δz(t)] + Spert[t(θ), eiωt(θ), δz(t)], (4.34)

where SGauss is a quadratic Gaussian functional, and Spert can be treated perturbatively

(i.e., expanding the exponential of Spert in Taylor series will produce a well-defined power

series expansion in string coupling, after the path integral is performed). The above repre-

sentation highlights the peculiar circumstance that the exponentials of t(θ) will be explicitly

retained in Spert alongside with powers of t(θ). When exp(−Spert) is expanded in Taylor

series, such exponentials will appear as insertions in a Gaussian path integral, and, of

course, integrating them will pose no more difficulty than integrating powers of t(θ). On

the other hand, expanding eiωt(θ) in powers of t(θ) (to induce a polynomial structure Spert,

as would be most commonly done in the various perturbative treatments) would result in

a miserably ill-defined perturbative expansion, as it has been already remarked.

We can now implement the expansion (4.33) in Seff and isolate the following terms

following term:

1

2

Z

dtdt′B−1(t, t′)
δ

δt(θ1)

»

pµ
1 −

t
Z

0

d(t̃, σ)Jµ(σ)dt̃d2σ

–

δ

δt(θ2)

»

p1µ −

t′
Z

0

d(t̃′, σ′)Jµ(σ′)dt̃′d2σ′

–

, (4.29)

which, after evaluating the functional derivatives, can be rewritten as

1

2
B−1 (t(θ1), t(θ2))

Z

∂nD(θ1, σ)Jµ(σ)d2σ

Z

∂nD(θ2, σ
′)Jµ(σ′)d2σ′. (4.30)

If t(θ) = t0 = const, the term in B containing N (t, t′) becomes negligible, and we have

B−1 (t(θ1), t(θ2)) =
1

z(t(θ1))
δ(t(θ1) − t(θ2)) =

1

z(t0)
δ(0) = ∞ (4.31)

Therefore, the particular term we are considering will give an infinite contribution to the second functional

derivative of Seff , and the Taylor-like expansion of Seff will not exist.
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contributing to SGauss:

S
(1)
Gauss =

(
p2

4z0
− z0

)
T ;

S
(2)
Gauss = − p2

16πα′z2
0

∫
dtdt′

t∫

0

dt̃

t′∫

0

dt̃′ N (t̃, t̃′)

=
p2

16πα′z2
0

∫
t(θ)∂n∂n′D(θ, θ′)t(θ′)dθdθ′;

S
(3)
Gauss =

p2

4z3
0

∫
δz2dt;

S
(4)
Gauss = − 1

2z0
pµ
1

∫
dt

t∫

0

d(t̃, σ)Jµ(σ)dt̃d2σ

= − 1

2z0
p1(p1 + p2)T +

1

2z0
pµ
1

∫
t(θ)∂nD(θ, σ)Jµ(σ)dθd2σ,

(4.35)

where we have introduced p2 = p2
1 = p2

2 (note that the values of p2
1 and p2

2 can be set

equal before applying the reduction formula, without affecting the values of the on-shell

amplitudes).

The first term in (4.35) merely provides for the correct pole structure. It will disap-

pear after integration over T and application of the reduction formula. The remaining three

terms define a Gaussian integral with respect to δz(t) and t(θ). (In terms of the expan-

sion (4.33), S
(1)
Gauss and S

(4)
Gauss arise from the A−1 term, S

(2)
Gauss arises from the −A−1BA−1

term, and S
(3)
Gauss arises from the A−1BA−1BA−1 term.) The following relation has been

used for removing the shorthands N (t, t′) and d(θ, σ) and bringing SGauss into a manifestly

quadratic form:
T∫

0

dt̃

t̃∫

0

dt δ(t − t(θ)) = T − t(θ). (4.36)

When writing down the Gaussian part of the effective action (4.35), we did not include

the term proportional to δz(t). Such term will only be absent if 1+ p2/4z2
0 = 0. Evidently,

this equation has two solutions

z0 = ±i
√

p2/2. (4.37)

Note that treating δz(t) in perturbation theory effectively amounts to a saddle point eval-

uation of the worldline path integral. For that reason, we should take a (coherent) sum

of the contributions from the two (complex conjugate) saddle points z0 = ±i
√

p2/2 when

evaluating the amplitude.

At this point, it is instructive to list the following substitution rules, which allow one

to easily identify the powers of M corresponding to the various terms in the perturbative

expansion (4.34): p → M , J → 1, z0 → M , δz →
√

M , t(θ) → 1. The first two rules follow
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directly from kinematics (we have chosen the power of M corresponding to p0, the largest

component of pµ, since it would contribute to a generic Lorentz-invariant expression). The

rule for z0 reflects the (on-shell) value of (4.37), while the last two rules can be deduced by

inspecting the Gaussian action (4.35).

4.4 The next-to-leading order corrections

We shall now proceed with the analysis of the perturbation part Spert of the effective action

Seff and evaluation of the next-to-leading order contribution to the disk scattering ampli-

tude. Inspecting further the expansion (4.33), one identifies the following contributions to

Spert relevant to the computation of the next-to-leading order corrections:

F1 =
1

4z0

∫
dt




t∫

0

d(t̃, σ)Jµ(σ)dt̃d2σ




2

;

F2 =
1

2z2
0

1

4πα′
pµ
1

∫
dtdt′

t∫

0

dt̃

t′∫

0

dt̃′N (t̃, t̃′)

t′∫

0

dt̃′′d2σ d(t̃′′, σ)Jµ(σ);

F3 =
p2

4z3
0

(
1

4πα′

)2 ∫
dt dt′ dt′′

t∫

0

dt̃

t′∫

0

dt̃′N (t̃, t̃′)

t′∫

0

d˜̃t′
t′′∫

0

dt̃′′ N (˜̃t′, t̃′′);

F4 =
1

2z2
0

pµ
1

∫
dt δz(t)

t∫

0

d(t̃, σ)Jµ(σ)dt̃d2σ;

F5 =
p2

2z3
0

1

4πα′

∫
dt dt′ δz(t)

t∫

0

dt̃

t′∫

0

dt̃′ N (t̃, t̃′);

F6 = − 1

2z3
0

pµ
1

∫
dt δz(t)2

t∫

0

d(t̃, σ)Jµ(σ)dt̃d2σ.

(4.38)

(In terms of the expansion (4.33), F1 is contained in A−1, F2 and F4 are contained in

−A−1BA−1, and F3, F5 and F6 are contained in A−1BA−1BA−1.)

Once the integration over δz(t) has been performed with the quadratic Gaussian form

S
(3)
Gauss of (4.35), the situation simplifies considerably. The contraction of F4 and F5 cancels

F2. The contraction of two copies of F5 cancels F3. The integral of F6 over δz(t) is divergent,

but it will merely combine with S
(4)
Gauss and renormalize the value of z0 adding divergent

higher order corrections11 to (4.37). Finally, the only non-trivial correction arising at the

11Note that such renormalizations would be necessary even if one tried to treat perturbatively the inte-

gration over δz(t) for a free particle, and they do not have anything to do with the problem of recoil per

se.
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next-to-leading order will come from F1 and from the contraction of two copies of F4:

∆SNLO[t(θ)] =
1

4z0

(
δµν − pµ

1pν
1

p2

)∫
dt

t∫

0

d(t̃, σ)Jµ(σ)dt̃d2σ

t∫

0

d(t̃′, σ′)Jν(σ′)dt̃′d2σ′.

(4.39)

At this point, it is convenient to eliminate the shorthand d(t, σ) by means of the relation

T∫

0

dt

t∫

0

dt̃ δ(t̃ − t(θ))

t∫

0

dt̃′ δ(t̃′ − t(θ′)) = T − t(θ) + t(θ′)

2
− Gkick

(
t(θ′) − t(θ)

)
, (4.40)

where

Gkick(t) =
|t|
2

(4.41)

is the “causal” Green function of a free particle (whose formal appearance should indeed

be very welcome in a treatment of the recoil problem).

After we substitute (4.40) into (4.39), it is convenient to absorb into a re-definition of

SGauss the contributions originating from the terms T and −(t(θ) + t(θ′))/2 of (4.40). We

shall thus introduce

∆S̃NLO[t(θ)] = − 1

4z0

(
δµν − pµ

1pν
1

p2

)

×
∫

dθ dθ′ d2σ d2σ′ Gkick

(
t(θ′) − t(θ)

)
∂nD(θ, σ)Jµ(σ) ∂n′D(θ′, σ′)Jν(σ′)

(4.42)

and12

S̃
(4)
Gauss =

1

2z0

(
p1 − p2

2

)µ ∫
t(θ)∂nD(θ, σ)Jµ(σ)dθd2σ, (4.43)

satisfying the relation S̃NLO + S̃
(4)
Gauss = SNLO + S

(4)
Gauss (up to terms of order g2

st).

Turning back to the original expressions for the scattering amplitude (4.9) and (4.25),

at next-to-leading order of recoil perturbation theory, we have to compute13 the expression:

〈p2|p1〉(1)J ∼ δ(p1 + p2 +
∑

kn) lim
p2→−M2

(
p2 + M2

)2

exp

[
−πα′

∫
Jµ(σ)D(σ, σ′)Jµ(σ′)d2σd2σ′

]

×
∫

dT exp
[
−MT − S

(1)
Gauss

] ∫
Dt(θ)

(
−∆S̃NLO

)
exp

[
−S

(2)
Gauss − S̃

(4)
Gauss

]
.

(4.44)

It is important to understand first how the reduction formula works (even though this

aspect of the computation is purely kinematic and by no means specific to recoil). An

12Note that p2 is minus the momentum of the outgoing (final state) D0-brane in our conventions. There-

fore, p1 − p2 in (4.43) is the average momentum of the initial and final state of the D0-brane.
13We shall not worry about the overall coefficient here. It is (in any case) not fixed by the path integral

itself and needs to be determined from unitarity considerations. Note however that the overall coefficient

in (4.44) does not influence the ratio of the leading and the next-to-leading order contributions to the disk

amplitude, which is the primary goal of our computations.
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essential circumstance to realize is that the integrand in (4.44) does not depend on the

constant mode of t(θ) (t̄ =
∫

t(θ)dθ). Because of that, the integration over the constant

mode of t(θ) will produce a factor of T , up to corrections from the fact that the integration

domain is determined by the full profile of the worldsheet boundary, not only the constant

mode. Since the typical size of the worldsheet boundary is
√

α′ (and does not depend on

T ), these corrections grow more slowly than T . In other words,

〈p2|p1〉(1)J ∼ δ(p1 + p2 +
∑

kn) lim
p2→−M2

(
p2 + M2

)2

× exp

[
−πα′

∫
Jµ(σ)D(σ, σ′)Jµ(σ′)d2σd2σ′

] ∫
dT (T + o(T )) exp

[
−MT − S

(1)
Gauss

]

×
∫

Dt̃(θ)
(
−∆S̃NLO

)
exp

[
−S

(2)
Gauss − S̃

(4)
Gauss

]
,

(4.45)

where t̃(θ) is orthogonal to the constant mode (
∫

dθ t̃(θ) = 0), and the contribution o(T )

comes from the endpoints of the worldline. If we now keep in mind that, with (4.37), S
(1)
Gauss

of (4.35) becomes

S
(1)
Gauss = ∓i

√
p2T, (4.46)

it is only left to notice that the integral

∫
dT T exp

[
−MT − S

(1)
Gauss

]
=

∫
dT T exp

[
−(M ∓ i

√
p2)T

]
=

1

(M ∓ i
√

p2)2
(4.47)

produces a double pole necessary for the application of the reduction formula, whereas the

integral

∫
dT o(T ) exp

[
−MT − S

(1)
Gauss

]
=

∫
dT o(T ) exp

[
−(M ∓ i

√
p2)T

]
(4.48)

will produce a weaker singularity, which will not survive the amputation of external legs.

We therefore arrive at the following expression for the next-to-leading order correction:

〈p2|p1〉(1)J ∼ δ(p1 + p2 +
∑

kn) exp

[
−πα′

∫
Jµ(σ)D(σ, σ′)Jµ(σ′)d2σd2σ′

]

×
∫

Dt̃(θ)
(
−∆S̃NLO

)
exp

[
−S

(2)
Gauss − S̃

(4)
Gauss

]
.

(4.49)

Note that, of the two saddle points of z0 given in (4.37), only one will produce the appropri-

ate singularity in (4.47), whereas the other one will leave the denominator non-vanishing,

and hence will give a zero contribution after the application of the reduction formula. The

on-shell value of z0 corresponding to the saddle point that gives a non-trivial contribution

to the scattering amplitude is given by

z0 =
M

2
(4.50)

and this is the value that should be used in (4.49).
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If we now specialize to the Lorentz frame in which the D0-brane moves with (spatial)

momentum ~P/2 before recoil, and (spatial) momentum −~P/2 after recoil,

p1 =

(
iM +

i

2M

(
~P

2

)2

,
~P

2

)
, p2 = −

(
iM +

i

2M

(
~P

2

)2

, −
~P

2

)
, (4.51)

the expression (4.49) can be rewritten (up to terms of order g2
st) in the form

〈p2|p1〉(1)J ∼ δ
(∑

k0
n

)
δ
(

~P +
∑

~kn

)
exp

[
−πα′

∫
Jµ(σ)D(σ, σ′)Jµ(σ′)d2σd2σ′

]

×
∫

Dt̃(θ)
1

2M

∫
dθ dθ′ d2σ d2σ′ Gkick

(
t̃(θ′) − t̃(θ)

)
∂nD(θ, σ)J i(σ) ∂n′D(θ′, σ′)J i(σ′)

× exp

[
1

4πα′

∫
t̃(θ)∂n∂n′D(θ, θ′)t̃(θ′)dθdθ′ − i

∫
t̃(θ)∂nD(θ, σ)J0(σ)dθd2σ

]

(4.52)

with the index i running over the Dirichlet directions only and the path integration per-

formed exclusively over t̃(θ) orthogonal to the constant mode.14

If we further Fourier-transform Gkick according to

Gkick(t) = − 1

4π

∫ (
1

(ω + i0)2
+

1

(ω − i0)2

)
e−iωtdω, (4.54)

the evaluation of the next-to-leading order correction (4.52) to the disk amplitude becomes

a matter of straightforward Gaussian integration:

〈p2|p1〉(1)J ∼ δ
(∑

k0
n

)
δ
(

~P +
∑

~kn

)
exp

[
−πα′

∫
Jµ(σ)D(σ, σ′)Jµ(σ′)d2σd2σ′

]

×
∫

Dt̃(θ)
−1

8πM

∫
dω dθ dθ′ d2σ d2σ′

×
(

1

(ω + i0)2
+

1

(ω − i0)2

)
e−iω(t̃(θ′)−t̃(θ))∂nD(θ, σ)J i(σ) ∂n′D(θ′, σ′)J i(σ′)

× exp

[
1

4πα′

∫
t̃(θ)∂n∂n′D(θ, θ′)t̃(θ′)dθdθ′ − i

∫
t̃(θ)∂nD(θ, σ)J0(σ)dθd2σ

]
.

(4.55)

4.5 Divergence cancellation

The expression (4.55) turns out to be divergent upon closer inspection. This is all for the

better, since, if it were finite, there would not be anything within the formalism to cancel

the annulus divergence (2.5). It is certainly true that, once the divergences are cancelled,

it is the remaining finite part of the amplitude that reflects the physical contents of the

theory. Yet, since it is the divergence cancellation that is of principal importance for us

14One should keep in mind that, if D(σ, σ′) is defined by ∆D(σ, σ′) = −δ(σ − σ′), the quadratic form
R

ξ(θ)∂n∂n′D(θ, θ′)ξ(θ′)dθdθ′ is negative, with the constant mode being the only zero mode. This can be

easily seen by considering

−

Z

ξ(θ)∂n∂n′D(θ, θ′)ξ(θ′)dθdθ′ =

Z

Xξ(θ)∂nXξ(θ)dθ =

Z

(∇Xξ)
2 dσ ≥ 0 (4.53)

with Xξ being the solution of the Laplace equation satisfying Xξ(θ) = ξ(θ).
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here, we shall not be paying much attention to the finite (physical) part of (4.55), but shall

concentrate on the divergence instead.

Before we proceed with the divergence computation, let us first note that the leading

order disk amplitude is given in the worldline formalism by

〈p2|p1〉(0)J ∼ δ(p1 + p2 +
∑

kn) lim
p2→−M2

(
p2 + M2

)2

exp
[
−πα′

∫
Jµ(σ)D(σ, σ′)Jµ(σ′)d2σd2σ′

]

×
∫

dT exp
[
−MT − S

(1)
Gauss

] ∫
Dt(θ) exp

[
−S

(2)
Gauss − S̃

(4)
Gauss

]

∼ δ
(∑

k0
n

)
δ
(

~P +
∑

~kn

)
exp

[
−πα′

∫
Jµ(σ)D(σ, σ′)Jµ(σ′)d2σd2σ′

]

×
∫

Dt̃(θ) exp

[
1

4πα′

∫
t̃(θ)∂n∂n′D(θ, θ′)t̃(θ′)dθdθ′ − i

∫
t̃(θ)∂nD(θ, σ)J0(σ)dθd2σ

]
.

(4.56)

These expressions15 are direct analogs of (4.44) and (4.52), without the insertion of the

perturbative corrections coming from expanding exp[−Spert].

With the above formula for the leading order disk amplitude, we can represent the

expression (4.55) for the next-to-leading order correction in the following convenient form:

〈p2|p1〉(1)J = 〈p2|p1〉(0)J

−1

8πM

∫
dω dθ dθ′ d2σ d2σ′

(
1

(ω + i0)2
+

1

(ω − i0)2

)

∂nD(θ, σ)J i(σ) ∂n′D(θ′, σ′)J i(σ′) exp

[
−πα′

(
ω2

(
N(θ, θ) + N(θ′, θ′) − 2N(θ, θ′)

)

+2ω

∫ (
N(θ′, θ̃) − N(θ, θ̃)

)
∂nD(θ̃, σ)J0(σ)dθ̃d2σ

)]
,

(4.57)

where N denotes the Neumann Green function and we have used16 the relation [12]
∫

∂n∂ñD(θ, θ̃)N(θ̃, θ′) dθ̃ = −δ̃(θ − θ′) (4.58)

(where δ̃(θ) is the zero-mode-orthogonal δ-function).

If we now substitute into (4.57) the regularized value of the singularity of the Neumann

function17

N(θ, θ) → N(θ, θ + δ) = − 1

π
log δ (4.60)

15Note that, should one be willing to recover the disk amplitude in its most conventional form from this

representation, one should keep in mind the relations between the Neumann and Dirichlet Green functions

(see the appendices of [12]). The result of the integration over t̃(θ) in (4.56) is of precisely such form that

it will correct J0(σ)D(σ, σ′)J0(σ
′) to J0(σ)N(σ, σ′)J0(σ

′). The formal presence of the Neumann Green

function will thus be restored for the Neumann directions, as was to be expected.
16In transition from (4.55) to (4.57), we performed the Gaussian integration in (4.55), and then used

the relation (4.58) to replace the kernel of the inverse of the quadratic Gaussian form in (4.55) with the

Neumann Green function. It is very natural that the Neumann Green function re-appeared at the end of

our derivations, since we have been considering a D0-brane, and thus had one Neumann direction in the

problem from the very beginning.
17In our conventions, ∆N(σ, σ′) = −δ̃(σ − σ′), where δ̃(σ − σ′) is the zero-mode-orthogonal δ-function.
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(with δ being the worldsheet “minimal distance” cut-off), the relevant ω-integral becomes:

∫
dω

(
1

(ω + i0)2
+

1

(ω − i0)2

)
exp

[
−πα′

(
ω2

(
N(θ, θ) + N(θ′, θ′) − 2N(θ, θ′)

)

+2ω

∫ (
N(θ′, θ̃) − N(θ, θ̃)

)
∂nD(θ̃, σ)J0(σ)dθ̃d2σ

)]

=

∫
dω

(
1

(ω + i0)2
+

1

(ω − i0)2

)
e2α′ω2 log δ

exp

[
2πα′

(
ω2N(θ, θ′) − ω

∫ (
N(θ′, θ̃) − N(θ, θ̃)

)
∂nD(θ̃, σ)J0(σ)dθ̃d2σ

)]

= −4
√

2πα′| log δ| + finite terms.

(4.61)

Note that the terms of the fourth line of (4.61) do not contribute into the divergent part of

the ω-integral, as can be made manifest by the rescaling ω′ = ω
√

2α′| log δ|. The remaining

integral can be evaluated using

∫
1

(ω ± i0)2
e−aω2

dω = −2
√

πa + const. (4.62)

Finally, substituting (4.61) into (4.57) and keeping in mind that

∫
∂nD(θ, σ)J(σ)dθdσ = p1 + p2 = P, (4.63)

we conclude that the divergent part of the next-to-leading order correction to the disk

amplitude has the form

〈p2|p1〉(1;div)
J =

√
| log δ| P 2

M

√
α′

2π
〈p2|p1〉(0)J . (4.64)

We should now compare (4.64) with the annulus divergence (2.5). The derivation

of (2.5) has been given within the worldsheet CFT rather than the worldline formalism.

However, it should be clear on physical grounds, and can be deduced by inspecting (4.56),

that at lowest order in gst on each given worldsheet, the worldline formalism will merely

append the Dirichlet momentum conservation δ-function to the result coming from the

worldsheet CFT computation. For that reason, (2.5) implies that, in the worldline formal-

ism, to order gst, the divergent part of the annulus amplitude is given by

〈p2|p1〉(annulus;div)
J = −

√
| log ε| P 2

2M

√
α′

π
〈p2|p1〉(0)J . (4.65)

Then, the singularities of the Neumann Green function (on an arbitrary worldsheet) can be extracted from

the expression for the Neumann Green function on a flat semi-infinite worldsheet:

N(z, z′) = −
1

4π
log |z − z′|2 −

1

4π
log |z − z̄′|2 (4.59)

(where we have used the complex worldsheet parametrization).
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In order to compare (4.64) and (4.65), it is important to establish a relation between

the minimal worldsheet distance cut-off δ and the minimal gluing parameter cut-off ε. To

do so, it suffices to remember that the minimal cross-section of the strip generated by

the plumbing fixture construction [8] with gluing parameter ε is proportional to
√

ε. It is

therefore natural to identify ε ∼ δ2. With such an identification,18 the divergences (4.64)

and (4.65) indeed cancel each other. We have thus shown (technically, to the order gst) that

introducing dynamical D0-brane worldlines automatically cures the infrared divergences

present in the conventional worldsheet description of D0-branes and associated with recoil.

5. The bilocal recoil operator

The worldline formalism provides a very natural way to deal with the translational mode

of the D0-brane. Nevertheless, in previous work, deformations of the D0-brane CFT with

recoil operators have been given a greater amount of attention. It would therefore be

beneficial to complete the picture and show that our worldline results can be mimicked by

including an appropriate recoil operator in the worldsheet CFT.

To this end, we shall inspect the following bilocal operator:

Vbilocal =
1

2M

∫
dθdθ′ Gkick

(
X0(θ) − X0(θ′)

)
: ∂nXi(θ)∂n′Xi(θ′) : . (5.1)

Here, once again, Gkick is the “causal” Green function of the free particle:

Gkick(t) =
|t|
2

. (5.2)

Note also that the normal ordering sign enclosing the operators ∂nXi(θ) and ∂n′Xi(θ′)

excludes contracting those two operators. On the other hand, Gkick

(
X0(θ) − X0(θ′)

)
is

not normal ordered at all. (These subtleties in the definition of Vbilocal are justified by the

comparison with the worldline formalism we are about to make.)

If one inserts the operator (5.1) into the CFT path integral for a closed string scat-

tering amplitude, performs the integration over Xi(σ), and then, using (4.10), performs

the integration over the values of X0(σ) in the interior of the worldsheet (not the bound-

ary), and further identifies X0(θ) → t(θ), one precisely recovers19 the next-to-leading order

correction (4.52) coming from the worldline formalism (except for the spatial momentum

conservation δ-function, see the discussion below). One therefore concludes that introduc-

ing the operator (5.1) as a background correction in the D0-brane CFT precisely mimics

(at the next-to-leading order) the contribution of the curved worldlines arising in the dy-

namical worldline description of recoil. It then follows from the computations in section 4.5

that the operator (5.1) cancels the annular divergence (2.5).

18A possible factor a in ε = aδ2 does not affect (4.64) and (4.65). Furthermore, the a-dependence in

the finite part of the annulus amplitude is suppressed by 1/
p

| log ε|, so that the physical amplitude is

unambiguously determined in the ε → 0 limit. We thank N. Nekrasov for pointing this out.
19Note that the integration over Xi(σ) with Dirichlet boundary conditions turns ∂nXi(θ) into

R

dσ ∂nD(θ, σ)J i(σ), as can be seen by contracting ∂nXi and exp(iJ · X) in the Dirichlet path integral

(given, for example, by (4.10) with ξ(θ) = 0). The exponential part of (4.52) is easily recognizable as the

same as the exponential part of (4.10) under the substitution X0(θ) → t(θ).
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Heuristically, the operator (5.1) can be understood as follows. ∂n′Xi(θ′) is the oper-

ator of momentum density flowing out of the point θ′ of the boundary of the worldsheet

(integrated over θ′, it gives the total transferred Dirichlet momentum P ). Then,

∫
dθ′ Gkick

(
X0(θ) − X0(θ′)

)
∂n′Xi(θ′) (5.3)

evaluates the displacement (in the Dirichlet directions) of the point on the D0-brane world-

line with the co-ordinate X0(θ) due to the momentum influx from the closed strings. Fi-

nally, the remaining ∂nXi(θ) actually displaces the point on the D0-brane worldline with

the co-ordinate X0(θ) by the amount (5.3). Overall, the operator (5.1) deforms the D0-

brane worldline precisely in the way that intuitively corresponds to its response to the

impact by the closed strings.

Of course, the above description merely serves to relate the background modification

we are proposing to the intuitive notion of recoil, and its precise justification comes from

the worldline derivations and the corresponding cancellation of divergences.

Note that the operator (5.1) is algebraically quite similar to the recoil operator sug-

gested in [2], even though they are by no means identical20. The operator (5.1) is manifestly

time-translation invariant, and it certainly does not imply that the D0-brane is moving (in

the act of recoil) along a fixed classical trajectory. The bilocal structure of the opera-

tor (5.1) is also more natural than the local operator in [2] since the annular divergence

involves two points on the boundary of the disk (connected by a thin strip).

We end this section with a discussion of a minor (yet instructive) subtlety closely re-

lated to the considerations of appendix B. One could näıvely guess that, after the recoil

operator is introduced as a deformation of the worldsheet CFT, the resulting finite closed

string scattering amplitudes should be referring to a D0-brane moving with a certain ve-

locity in the initial state, and with a different velocity (developed in the course of recoil)

in the final state. In other words, one could think that the initial and final states of the

D0-brane are momentum eigenstates. This näıve guess cannot be correct, however, since

the amplitude to transition between two momentum eigenstates (in a way that conserves

momentum) must be infinite on account of the momentum conservation δ-function, whereas

the amplitude computed by the worldsheet CFT deformed with the recoil operator is fi-

nite by construction. (Note that the presence of the momentum conservation δ-function is

closely related to the non-normalizability of the momentum eigenstates.)

The resolution here is that (in close parallel to the considerations of appendix B) the

CFT deformed with the recoil operator really describes the transition between normalized

wavepacket states (in the limit of spatial extent of the wavepacket going to infinity, and the

extent in momentum space shrinking to 0), rather than the (non-normalizable) momentum

eigenstates. The difference between these amplitudes is precisely that the limit of the

wavepacket amplitude does not contain a momentum conservation δ-function (yet it does

contain an energy conservation δ-function), and this is why the infinitely broad wavepacket

20The authors of [3] attempt to employ a bilocal recoil operator to cancel the annular divergence, but it

is different from the correct recoil operator (5.1).
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states provide the correct way to think about the finite scattering amplitudes, which remain

after the CFT divergences have been cancelled with the recoil operator.

6. Conclusions

Our aim in this paper has been to reconsider the issue of D0-brane recoil in bosonic string

theory. The various approaches to this problem that have been previously described in the

literature are disparate and lead to incompatible results.

Our primary tool for systematic investigation of the D0-brane recoil has been the world-

line formalism based on introducing dynamical worldlines for D0-branes. In this formalism,

the problem of recoil becomes conceptually very simple, since the degree of freedom corre-

sponding to the translational motion of the D0-brane appears in a very explicit fashion.

Using the computational techniques we have developed within the worldline formalism,

we have analyzed the recoil scattering amplitudes to next-to-leading order in the string

coupling. The conventional D0-brane CFT computation of recoil amplitudes is invalidated

by an infrared divergent contribution to the annulus diagram. We have shown that, in

the worldline formalism, an (infrared divergent) correction to the string diagram of disk

topology automatically cancels the annular divergence.

The cancellation between string diagrams of different topology naturally suggests a link

to the Fischler-Susskind mechanism of divergence cancellation in string theory. Indeed, we

have succeeded to show that, within the conventional worldsheet CFT, the corrections

arising in the worldline formalism can be imitated by deforming the background of a static

D0-brane with a specific recoil operator. The form of the recoil operator we have found

(as an elaboration of our worldline formalism results) is bilocal and different from the ones

previously suggested in the literature.

It would be interesting to show that the bilocal recoil operator deduced here through

an appeal to the worldline formalism is indeed unique, even from the worldsheet CFT

perspective. This would require a careful consideration of the divergences arising from the

various limits in the moduli space, not only the annulus divergence. Some preliminary

remarks to this end have been made in appendix A. However, at present, we have refrained

from further considerations of this issue.

We have also given an analysis of the recoil process in the DBI formalism. The ad-

vantage of such an approach is that the resummed form of the DBI action can be used

to obtain information about infrared divergences at all orders in the string coupling (even

though the DBI formalism itself can only be used for a sufficiently small energy of the in-

cident closed strings). We have seen that the resummed amplitudes are finite and, in place

of the infrared divergences, display the natural momentum conservation features. Such a

resummation pattern is likely to persist to the level of the full string theory, even though,

as of now, appropriate techniques are lacking to make it explicit.

In the DBI analysis, we have also asked what state is implicitly selected by the standard

D0-brane CFT. Assuming the corresponding state of the DBI theory to be a Gaussian

wavepacket, we have found that the wavepacket has to be sharply localized in momentum

– 25 –



J
H
E
P
1
2
(
2
0
0
6
)
0
8
1

space. It will be interesting to check whether this conclusion is consistent with higher order

computations in the D0-brane CFT.
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A. Comparison with previously advocated approaches to recoil

In this appendix, we compare our results with three earlier proposals in the literature [2 – 4].

Of the three, the treatment of [4] bears the closest similarity to the considerations

of the present paper. Nevertheless, the presentation given in [4] is not satisfactory, as

far as the problem of recoil is concerned. Indeed, as has been emphasized in the main

text, cancellations between divergences coming from worldsheets of different topologies

are essential to the implementation of recoil in string theory. The authors of [4] do not

recover the disk divergence in a form that would make it possible to see how it cancels

the divergence in the modular integration of the annulus. The derivations described in the

present publication are intended to make up for this shortcoming.

The paper [2] is also important for our present considerations, in that it emphasizes

the role of the Fischler-Susskind mechanism for the implementation of recoil in string

theory. It has already been mentioned section 3 that the version of the Fischler-Susskind

mechanism that naturally arises from the worldline formalism bears a strong resemblance

to the considerations of [2]. As we could see, a modification of the approach of [2] reconciled

it with the considerations building upon the worldline formalism. However, as we shall now

argue, the original proposal of [2] does not provide an adequate treatment of recoil.

In order to cancel the modular integration divergence coming from the annulus, the

authors of [2] introduce a background correction of the form

VPT ∼
∫

dθ ∂nXi(θ)F i(X0(θ)), (A.1)

where F (t) is some function and the index i labels the Dirichlet directions. The following

concrete choice is made:

F i(t) =
pi
2 − pi

1

M
t Θ(t) (A.2)
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(where p1, p2 and M are the initial and final momentum and the mass of the D0-brane

respectively, and Θ(t) is the step function). However, as we shall see below, the divergence

cancellation only depends on the asymptotic behavior of F (t) in the infinite past and future.

Note the absence of normal ordering in (A.1).

The physical interpretation of this background correction (the “recoil operator”) is

that the D0-brane starts moving along the trajectory F (t). In particular, the choice of

F (t) made in [2] corresponds to the D0-brane abruptly starting to move at the moment

t = 0. The authors then express a minor dissatisfaction with the abruptness of recoil which

is manifest in their implementation. However, the main problem with the operator (A.1)

is not the abruptness by itself, but rather the fact that it singles out a particular moment

of time, namely the moment at which the D0-brane starts moving. While the finite part

of the amplitude does depend on which moment of time one chooses, all choices are equiv-

alent as far as divergence cancellation goes (as we shall show momentarily). In a classical

scattering process, a reasonable choice would be the moment of impact of the scattering

process. However, in a quantum mechanical scattering process of states with well-defined

momenta, there is no well-defined moment of impact that could single out any particular

recoil operator.

If one starts with F (t) satisfying the asymptotic conditions

F i(t → −∞) ∼ 0, F i(t → +∞) ∼ vit + xi
∗, (A.3)

the Fourier transform of F (t) can be written in the form

F i(ω) =
vi

(ω + i0)2
+

xi
∗

ω + i0
+ ϕi(ω), (A.4)

where ϕ(ω) is analytic at ω = 0. Correspondingly, the operator (A.1) can be rewritten in

the form

VPT ∼
∫

dθ dω F (ω) ∂nXi(θ) exp [−iωX0(θ)] . (A.5)

Let us now insert this operator into the disk amplitude containing the closed string vertex

operators V1(σ1),· · ·,Vn(σn) carrying momenta k1,· · ·,kn with P =
∑

kn:

〈VPT V1(σ1) · · ·Vn(σn)〉D2 . (A.6)

Performing first the path integral over X0, we obtain
∫

dθ F i(P 0) ∂nXi(θ) exp
[
(P 0)2 log ε + P 0h(θ, σn, kn)

]
〈V1(σ1) · · · Vn(σn)〉

R

X0

D2
. (A.7)

Here, the (P 0)2 log ε term in the exponent comes from the self-contraction in the recoil

operator, all the contractions among the various vertex operators are symbolically assem-

bled as 〈V1(σ1) · · · Vn(σn)〉
R

X0

D2
, and the P 0h(θ, σn, kn) term comes from the contractions

between the recoil operator and the vertex operators. We shall not need the explicit form

of the function h(θ, σn, kn). Let us only note that it is non-singular as long as σn’s stay

away from the boundary of the worldsheet. We shall briefly comment below on the impor-

tant subject of integration over the positions of the vertex operators. Note also that the
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integration over ω present in (A.5) has disappeared in (A.7) due to the energy conservation

δ-function.

We shall now examine the ε → 0 limit of the expression (A.7). In this limit, it vanishes

unless P 0 = 0 and should therefore be thought of as a distribution (made of the δ-function

and its derivatives) rather than an ordinary function. Hence, to analyze the ε → 0 limit, we

shall examine the convolution of (A.7) with an arbitrary smooth function G(P 0) admitting

a Taylor expansion

G(P 0) = G(0) + P 0G′(0) + · · · . (A.8)

It is important to keep in mind the expression (A.4) for the function F . Only a few terms

of the Taylor expansion will contribute to the final answer, since
∫

dP 0
(
P 0

)n
exp

[
(P 0)2 log ε

]
(A.9)

goes to 0 in the limit ε → 0 if n ≥ 0. Some other relevant formulas for the integral

expressions we shall have to use are
∫

dP 0 exp
[
(P 0)2 log ε

]

(P 0 + i0)2
∼

√
| log ε|,

∫
dP 0 exp

[
(P 0)2 log ε

]

P 0 + i0
∼ 1. (A.10)

If we now contract (A.7) with G(P 0):
∫

dθ dP 0 G(P 0)F i(P 0) ∂nXi(θ) exp
[
(P 0)2 log ε + P 0h(θ, σn, kn)

]
〈V1(σ1) · · ·Vn(σn)〉

R

X0

D2

(A.11)

and use the above integral formulas, we obtain a few distinct terms:

1. The only term that diverges in the limit ε → 0 is proportional to

√
| log ε| vi G(0)

∫
dθ ∂nXi(θ) 〈V1(σ1) · · · Vn(σn)〉

R

X0

D2
. (A.12)

After integration over Xi, this becomes
√

| log ε| G(0) viP i 〈V1(σ1) · · ·Vn(σn)〉D2 . (A.13)

The corresponding term in the expression (A.7) itself (rather than its convolution

with G(P 0)) is √
| log ε| δ(P 0) viP i 〈V1(σ1) · · · Vn(σn)〉D2 . (A.14)

This is precisely the structure that, in [2], has been claimed to be responsible for

cancelling the annular divergence after the final recoil velocity v is adjusted to the

value P/M . Note, however, that, by itself, this argument does not even determine

the velocity v, but only its component along P .

2. Another contribution comes from the P 0G′(0) term in the Taylor expansion for G(P 0)

and is proportional to

δ′(P 0) viP i 〈V1(σ1) · · ·Vn(σn)〉D2 . (A.15)

This term should correct the energy conservation in such a way that the final energy

of the D0-brane (proportional to viP i) is taken into account.
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3. The last contribution we shall consider here comes from the second term in (A.4). It

is proportional to

δ(P 0)xi
∗P

i 〈V1(σ1) · · · Vn(σn)〉D2 . (A.16)

The essential feature that needs to be highlighted here is that the above expression

depends on x∗, the parameter that shifts the D0-brane trajectory. Different values

of x∗ would produce different contributions to the finite part of the closed string

scattering amplitude.

However, there is clearly no preferred physical choice for x∗. The D0-brane is a quantum

particle that does not have a definite position in space as long as its final velocity v is

specified. An attempt to implement the approach of [2] thus leads to an apparent absurdity:

an infinite-fold ambiguity in the values of the physical amplitudes governed by the value

of the fictitious position of the quantum D0-brane.

Finally, let us briefly comment on the paper [3]. In its spirit and general attitude

to implementing the Fischler-Susskind mechanism, it is similar to the approach of [2].

However, the authors of [3] claim that it is necessary to introduce simultaneously two

different recoil operators, one of which is bilocal (and resembles, but is not the same as the

one we introduced in relation to the worldline formalism), while the other one is a shift

of the classical D0-brane trajectory analogous to [2]. From our analysis, we do not see a

necessity for two different types of recoil operators. Also, a number of mathematical details

appear to be different from what we find. For example, it is claimed in [3] that the annular

divergence is proportional to log ε/T (where T is designated as a “large time cut-off”),

while according to [2] and the present paper, the correct form of the annular divergence is√
| log ε|.

B. The DBI picture of D0-brane recoil

The DBI description is an extremely powerful framework to study infrared issues for D0-

branes, since the resummed non-polynomial form of the DBI action permits to draw some

conclusions valid to all orders in the string coupling. The picture of recoil one arrives at

through such considerations (which is only valid at low energies, but includes perturbative

resummations) is very complementary to our treatment in the main text, where complete

string amplitudes were considered at next-to-leading order in the string coupling.

There is a subtlety one needs to resolve to make an appropriate use of the DBI action

for D0-branes. In the DBI action, there is an explicit degree of freedom corresponding to

the position of the D0-brane. To compute scattering amplitudes, one needs to specify the

initial and final states for this degree of freedom. However, it is not obvious which choice

of the initial and final states corresponds, say, to the standard computations within the

(infrared divergent) D0-brane CFT.

Technically, the question we must ask is what initial and final states for the transla-

tional mode of the D0-brane one needs to specify (in the DBI language) in order to make

the resulting DBI amplitude mimic the low-energy limit of the worldsheet CFT amplitude

without open strings. The answer will not be completely trivial; for example, the näıve
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guesses that the state of the D0-brane in the worldsheet CFT is the momentum eigenstate

with zero momentum, or a coordinate eigenstate with the D0-brane located at the origin

(or a wavepacket localized at the origin with a width of, say,
√

α′) are all incorrect.

We shall start with the DBI action:

SDBI = −τ

∫
dp+1ξ e−Φ(X(ξ))

{
det

[
∂Xµ

∂ξa

∂Xν

∂ξb
(Gµν(X(ξ)) + Bµν(X(ξ))) + 2πα′Fab

]}1/2

(B.1)

and restrict ourselves, for the sake of convenience, to scattering of one dilaton off a (non-

relativistic) D0-brane21. In this case, the relevant part of the above action is

M

∫
dt

(
1

2

(
Ẋ

)2
− Φ

(
t,Xi(t)

)
+

1

2

(
Φ(t,Xi(t))

)2
)

. (B.2)

The interactions of the dilaton and the translational mode involving time derivatives are

omitted, as they do not contribute to infrared divergences.

Let us consider the contribution to the dilaton scattering from the last term in (B.2).

In the operator language (we work in the interaction picture), it is just

〈f, k2|
M

2

∫
dt

(
Φ(t,Xi(t))

)2 |i, k1〉 , (B.3)

where 〈f | and |i〉 describe the initial and final state of the D0-brane, and 〈k2| and |k1〉
describe the outgoing dilaton of momentum k2 and incoming dilaton of momentum k1.

Using

〈k2|
(
Φ(t, xi)

)2 |k1〉 ∼ exp
[
i(k0

2 − k0
1)t

]
exp

[
−i(ki

2 − ki
1)x

i
]

(B.4)

(the overall coefficient of the amplitude will not interest us here), (B.3) can be rewritten

as

〈f |
∫

dt exp
[
−i(ki

2 − ki
1)X

i(t)
]
exp

[
i(k0

2 − k0
1)t

]
|i〉 . (B.5)

We shall simply choose the initial and final states of the D0-brane to be spatially broad

Gaussian wave packets (of width d at t = 0) with momentum centered around P1 and P2,

respectively. We shall see that the inverse width of the wave packets should be identified

in a particular way with the infrared cut-off imposed in the worldsheet theory.

It is most convenient to compute the matrix element in (B.5) in the “Schrödinger”

picture22 and in the momentum representation, since the expressions for the Schrödinger

(momentum) wavefunctions of the initial and final states we have chosen are well-known:

Ψf (p, t) ∼ dD/2 exp

[
−(p − P2)

2d2

2

]
exp

[
ip2t

2M

]
;

Ψi(p, t) ∼ dD/2 exp

[
−(p − P1)

2d2

2

]
exp

[
ip2t

2M

]
,

(B.6)

21Note that even though there are higher derivative corrections to the DBI action, they would not have a

major bearing upon any infrared issues, such as recoil. Indeed, adding derivative interactions to any given

process will soften the infrared behavior, and hence will only be able to introduce subleading contributions

(compared to the ones coming from the DBI action).
22The quotation marks highlight that it is the Schrödinger picture of the free particle, not of the particle

described by (B.2).
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where D is the number of spatial dimensions. Moreover, in the momentum representation,

the operator exp[i(k1 − k2)X] simply shifts the wavefunction by k1 − k2. Hence, (B.5)

becomes

〈f |
∫

dt exp
[
−i(ki

2 − ki
1)X

i(t)
]
exp

[
i(k0

2 − k0
1)t

]
|i〉

=

∫
dt exp

[
i(k0

2 − k0
1)t

] ∫
dp Ψ∗

f (p, t)Ψi(p + k2 − k1, t)

∼ exp

[
−(P2 + k2 − P1 − k1)

2d2

2

]

×
∫

dt exp

[
i

(
k0
2 − k0

1 +
P 2

2

2M
− P 2

1

2M

)
t

]
exp

[
−t2 ζ (Pi, kn) /d2

]
,

(B.7)

where ζ is some function of the momenta whose precise form will drop out of the final

result. The important point is that, as d goes to infinity, the integral over t becomes just

the energy conserving δ-function, and the DBI expression for the particular amplitude we

are considering (scattering of one dilaton off the D0-brane due to the contact interaction

term in the DBI action) becomes proportional to

δ

(
k0
2 − k0

1 +
P 2

2

2M
− P 2

1

2M

)
exp

[
−(P2 + k2 − P1 − k1)

2d2

2

]
. (B.8)

(Note that, because we have been considering normalized wavepacket states rather than

momentum states, the momentum conservation δ-function does not appear in the amplitude

in the d → ∞ limit: rather, the amplitude is finite (in this limit) if momentum conservation

is satisfied, and vanishes otherwise.)

The question is now how this amplitude should be expanded to match the structure

of the IR-divergent CFT-based worldsheet perturbation theory. It turns out that the CFT

amplitude is recovered (in the limit d → ∞) by relating d with the worldsheet cut-off ε via

the identification

d2 ∼ gstα
′
√

| log ε|. (B.9)

This relation is not obvious a priori and is imposed precisely because it makes the struc-

ture of the IR-divergent worldsheet perturbative expansion visible at the level of the DBI

action. This IR-divergent structure is extremely unnatural from the standpoint of the DBI

description, but it is forced upon us by the worldsheet CFT, where it is implemented by

construction.

With the above identification, one can readily expand the amplitude (B.8) in powers

of gst (or 1/M) and observe the emergence of the IR-divergent structure reminiscent of the

CFT. The lowest-order term is just

δ
(
k0
2 − k0

1

)
, (B.10)

which is obviously just one of the terms in the low-energy expansion of the worldsheet

disk amplitude (keep in mind that we have restricted our analysis to the dilaton contact
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interaction term in the DBI Lagrangian). There are two corrections to the above δ-function

arising at first order in gst:
(

P 2
2

2M
− P 2

1

2M

)
δ′

(
k0
2 − k0

1

)
, (B.11)

which arises from expanding the energy conservation δ-function and

d2(P2 + k2 − P1 − k1)
2δ

(
k0
2 − k0

1

)
, (B.12)

which arises from expanding the exponential (keep in mind that d2 ∼ gst if one is match

the DBI and CFT descriptions).

If P1 = P2 = 0, which is precisely the case of the standard D0-brane CFT, (B.11)

vanishes, whereas (B.12) reproduces the IR-divergence in the modular integration of the

annulus. The conclusion (reached here through an appeal to the DBI formalism) is then

that the standard D0-brane CFT amplitudes without open strings describe23 a D0 brane

whose initial and final states are Gaussian wavepackets centered around P = 0, X = 0,

and the width should be identified with the CFT infrared cut-off as in (B.9) and taken to

infinity. (In the limit, the normalization factor of the wavepacket becomes infinite.)

Furthermore, through an appeal to the DBI formalism, we have given a complete re-

summation (B.8) of the leading infrared divergences in string amplitudes. The resulting

picture is that the infrared divergences resum in a way that reconstructs the momentum

conservation “δ-function”24. Conversely, one can think of the infrared divergences in string

perturbation theory as a result of attempting to expand in a Taylor series the (non-analytic)

momentum conservation “δ-function”. It is unfortunate that analogous resummations can-

not be rigorously performed in full string theory (rather than the low-energy effective field

theory) with present technology. Such resummations play an important role in the analysis

of scattering of closed strings off D1-branes and the associated response phenomena [9].

For recent investigations of infrared divergence resummations in the closed string sector,

see [17].

C. Normalization of the annular divergence

In section 2, we have given a derivation of the functional form of the annulus divergence:

〈
V (1) · · · V (n)

〉(div)

annulus
= NP 2

〈
V (1) · · ·V (n)

〉
D2

1∫

0

dq

∞∫

−∞

dω q−1+α′ω2
. (C.1)

23An alternative way to reproduce the infrared divergent CFT amplitudes within the DBI formalism

would be to introduce a small “mass” m for the “field” X (that is, a shallow harmonic oscillator potential).

Then, in the limit m → 0, the transition amplitudes for D0-brane in the ground state of the harmonic

oscillator potential will reproduce the infrared divergent D0-brane CFT. Note that the ground state of the

harmonic oscillator formally vanishes in the limit m → 0, and it is in fact identical to the broad Gaussian

wavepacket state employed in our derivations, provided that d and m are appropriately identified. We shall

use this representation in appendix C.
24In this paragraph, by “δ-function” we mean a function which is 1 if its argument is 0, and 0 otherwise.

It only differs from the ordinary δ-function by normalization, and makes an appearance in the amplitudes

of this section due to the fact that we are working with normalized wavepacket states.
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An integration over q reveals the “propagator” of the translational mode:

〈
V (1) · · ·V (n)

〉(div)

annulus
=

N
α′

P 2
〈
V (1) · · · V (n)

〉
D2

∞∫

−∞

dω

ω2
. (C.2)

However, our considerations did not fix the overall normalization N in this expression.

It should be in principle possible to fix the coefficient N by considerations within

the worldsheet theory. This would require a careful analysis of the unitarity constraints,

which would determine the absolute normalizations of the vertex operators and the gluing

parameter integration measure in the plumbing fixture construction.

However, one can take advantage of the fact that the only ambiguity in (C.1) is a

momentum-independent constant. Therefore, one can fix the value of this constant by

considering the small momenta region. In this region, the DBI set-up of appendix B would

be applicable. Since unitarity in field theory is automatic, determining normalization of

the amplitudes is much easier in the DBI set-up than in worldsheet theory. Furthermore,

since the coefficient N does not depend on which scattering process is being considered,

we can restrict ourselves to just one simple process, for example, scattering of one dilaton

off a D0-brane with the amplitude given by (B.5):

〈f |
∫

dt exp
[
−i(ki

2 − ki
1)X

i(t)
]
exp

[
i(k0

2 − k0
1)t

]
|i〉 . (C.3)

To imitate within the DBI formalism the state of the D0-brane implicitly chosen by

the D0-brane CFT, let us introduce a small “mass” m for the “field” X:

S
(m)
DBI = M

∫
dt

(
1

2

(
Ẋ

)2
− m2

2
X2 +

1

2

(
Φ(t,Xi(t))

)2
+ · · ·

)
. (C.4)

This essentially generates a shallow harmonic oscillator potential Mm2X2/2 for the D0-

brane. We can then choose |i〉 and |f〉 to be the ground state25 of the harmonic oscillator.

Then, the amplitude (C.3) can be transformed26 as follows (P i = ki
1 − ki

2):

〈0|
∫

dt exp
[
−i(ki

2 − ki
1)X

i(t)
]
exp

[
i(k0

2 − k0
1)t

]
|0〉

∼ δ(k0
2 − k0

1)

{
1 − P iP j

2

〈
0|Xi(0)Xj(0)|0

〉
+ · · ·

}
.

(C.5)

(expanding the exponential in Taylor series generates Feynman graphs for the field X; the

first term in the brackets is the leading order contribution, the second term is the lowest

order loop correction). To make contact with (C.2), we shall express
〈
0|Xi(0)Xj(0)|0

〉

through the propagator of the X-field:

〈
0|Xi(0)Xj(0)|0

〉
=

δij

2πM

∫
dω

ω2 + m2
(C.6)

25It is in principle an assumption that the state of the D0-brane implicit in the (infrared-divergent)

worldsheet CFT can be represented as the ground state of the harmonic oscillator in the mass-regulated

DBI theory, and, in a rigorous treatment, it would need to be independently justified. We nevertheless

feel that this assumption is plausible enough to be used, for practical purposes, in our computation of the

coefficient of the annulus divergence.
26Note that, for any operator A(t) in the interaction (or Heisenberg) picture, 〈0|A(t)|0〉 = 〈0|A(0)|0〉.
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Then, the ratio between the tree-level (disk) and the one-loop (annulus) contributions

in (C.5) is given by

− P 2

4πM

∫
dω

ω2 + m2
. (C.7)

In order to compare the DBI expression (C.7) and the worldsheet expression (C.2),

we note that, in both formulas, ω denotes the same physical quantity: it is the energy of

the off-shell massless open string state propagating in the loop. We can then introduce

a common infrared regulator in (C.7) and (C.2) by removing energies less than ωmin and

sending m to 0. This yields

− P 2

4πM

∫

|ω|>ωmin

dω

ω2
(C.8)

for (C.7), and
N
α′

P 2

∫

|ω|>ωmin

dω

ω2
(C.9)

for (C.2). Comparing these two expressions, one can deduce the value of the normalization

coefficient N :

N = − α′

4πM
. (C.10)

Now we can substitute this value of N into (C.1) and obtain the expression for the annu-

lus divergence with the correct normalization. For comparison with worldsheet derivations,

it is convenient to cut off the small values of the gluing parameter q in order to regularize

the infrared divergence, as was done in section 2. Then,

〈
V (1) · · · V (n)

〉(div)

annulus
= −α′P 2

4πM

〈
V (1) · · ·V (n)

〉
D2

1∫

ε

dq

∞∫

−∞

dω q−1+α′ω2

= − P 2

2M

√
α′

π

〈
V (1) · · ·V (n)

〉
D2

√
| log ε|.

(C.11)

References

[1] R. Rajaraman, Solitons and instantons, North-Holland 1982, especially pp. 252–263, and

further references in that book.

[2] V. Periwal and O. Tafjord, D-brane recoil, Phys. Rev. D 54 (1996) 3690 [hep-th/9603156].

[3] W. Fischler, S. Paban and M. Rozali, Collective coordinates for D-branes, Phys. Lett. B 381

(1996) 62 [hep-th/9604014].

[4] S. Hirano and Y. Kazama, Scattering of closed string states from a quantized D-particle,

Nucl. Phys. B 499 (1997) 495 [hep-th/9612064].

[5] S. Nakamura, Recoiling D-branes, Nucl. Phys. B 709 (2005) 192 [hep-th/0406193].

[6] O. Evnin, Worldline techniques for string theory solitons: recoil, annihilation and pair

production, hep-th/0507180.

– 34 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD54%2C3690
http://arxiv.org/abs/hep-th/9603156
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB381%2C62
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB381%2C62
http://arxiv.org/abs/hep-th/9604014
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB499%2C495
http://arxiv.org/abs/hep-th/9612064
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB709%2C192
http://arxiv.org/abs/hep-th/0406193
http://arxiv.org/abs/hep-th/0507180


J
H
E
P
1
2
(
2
0
0
6
)
0
8
1

[7] W. Fischler and L. Susskind, Dilaton tadpoles, string condensates and scale invariance, Phys.

Lett. B 171 (1986) 383; Dilaton tadpoles, string condensates and scale invariance, 2, Phys.

Lett. B 173 (1986) 262.

[8] J. Polchinski, Factorization of bosonic string amplitudes, Nucl. Phys. B 307 (1988) 61.

[9] B. Craps, O. Evnin and S. Nakamura, Local recoil of extended solitons: a string theory

example, hep-th/0608123.

[10] N.H. Christ and T.D. Lee, Quantum expansion of soliton solutions, Phys. Rev. D 12 (1975)

1606.

[11] J. Polchinski, Combinatorics of boundaries in string theory, Phys. Rev. D 50 (1994) 6041

[hep-th/9407031].

[12] O. Evnin, On quantum interacting embedded geometrical objects of various dimensions,

Caltech Ph.D. thesis (2006), available electronically at

http://etd.caltech.edu/etd/available/etd-06072006-174745/

[13] J. Liu and J. Polchinski, Renormalization of the Möbius volume, Phys. Lett. B 203 (1988) 39.
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